
Practice Problems for
Recursion

1. Write the recursive function
int Sum(ArrayList<Integer> L, int i)

that returns the sum of the elements of L at index n or higher. The
sum of the entire list will be Sum(L, 0). Yes, you can do this just as
easily with a loop, but do it recursively for the practice.

2. Write the recursive function
int Largest(ArrayList<Integer> L, int i)

that returns the largest element of L at index i or higher.

3. Write a recursive function that reverses a string:
String reverse(String s)

4. Write a recursive function to determine if a string is a palindrome
(i.e. if it is equal to its reverse, such as “bob”)

5. Implement BinarySearch recursively. You have a sorted array
int A[]; you need to write

boolean Search(int A[], int lowIndex, int hiIndex, int x)
that returns true if x is one of the elements of A between the two
indices, and false if it isn’t. X is an element of A if
Search(S,0,A.length-1, x) returns true.

f. Here is a Node type for a binary search tree that holds integer data:
class Node {

int data;
Node leftChild, rightChild;

}
Give a recursive function

ArrayList<Integer> inOrder(Node p)
that returns an inOrder traversal of the tree rooted at Node p.

Note that if L and M are ArrayLists then L.addAll(M) adds all of the
elements of M onto L.

